2019年枣庄科技职业学院单独招生数学考试大纲

浏览
2019-08-07 19:26:49

2019年枣庄科技职业学院单独招生数学考试大纲




枣庄科技职业学院

2019年单独招生数学考试大纲

一、考试命题依据

考试以教育部颁布的《普通高中数学课程标准(2017年版)》和《中等职业学校数学课程标准》为依据,并根据我校对新生文化素质的要求,确定数学科目考试内容。

二、考试办法

1. 答卷方式:闭卷、笔试。

2. 试卷分值:100分。

3. 主要题型:选择题

4. 试题难易程度:题量少于夏季普通高考,难易比例为“容易:中等难度:较难=5:4:1”。

三、考试内容及要求

(一)集合

1.了解集合的含义、元素与集合的属于关系。

2.理解集合之间包含与相等的含义,能识别给定集合的子集。

3.集合的基本运算:

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

(二)方程与不等式

1.会解一元二次方程。

2.会解形如 或  的绝对值不等式。

3.会解简单的一元二次不等式,会用区间表示不等式的解集。

(三)函数概念与基本初等函数 (幂函数、指数函数、对数函数)

1.函数

(1)了解构成函数的要素,会求一些简单函数的定义域和值域。

 (2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

(3)了解简单的分段函数,并能简单应用。

(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。

(5)会运用函数图像理解和研究函数的性质。

2.幂函数

通过具体实例,结合的图象,理解它们的变化规律,了解幂函数。

3.指数函数

(1)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

(2)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。

4.对数函数

(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。

(四)三角函数

1.任意角的概念、弧度制

(1)了解任意角的概念。

(2)了解弧度制的概念,能进行弧度与角度的互化。

2.三角函数

(1)理解任意角三角函数(正弦、余弦、正切)的定义。

(2)能推导正弦、余弦、正切的诱导公式,能画出 y = sin x , y = cos x的图像,了解三角函数的周期性。

(3)理解正弦函数、余弦函数的性质(如单调性、最大值和最小值以及与x 轴的交点等)。

(4)理解同角三角函数的基本关系式。

(五) 三角恒等变换

1.和与差的三角函数公式

(1)能利用两角差的余弦公式导出两角差的正弦、正切公式。

(2)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系。

2.简单的三角恒等变换:能进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)。

(六)解三角形

1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

(七)平面向量

1.平面向量的基本概念:理解平面向量的概念,理解两个向量相等的含义。

2.向量的线性运算

(1)掌握向量加法、减法的运算,并理解其几何意义。

(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。

(3)了解向量线性运算的性质及其几何意义。

3.平面向量的基本定理及坐标表示

(1)了解平面向量的基本定理及其意义。

(2)掌握平面向量的正交分解及其坐标表示。

(3)会用坐标表示平面向量的加法、减法与数乘运算。

(4)理解用坐标表示的平面向量共线的条件。

4.平面向量的数量积

(1)理解平面向量数量积的含义及其物理意义。

(2)了解平面向量的数量积与向量投影的关系。

(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。

(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

(八)数列

1.数列的概念和简单表示法:了解数列的概念和几种简单的表示方法(列表、图像、通项公式)。

2.等差数列、等比数列

(1)理解等差数列、等比数列的概念。

(2)掌握等差数列、等比数列的通项公式与前n 项和公式。

(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。

(九)立体几何初步

1.空间几何体

(1) 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图与直观图,了解空间图形的不同表示形式。

(2) 了解球、棱柱、棱锥、台的表面积和体积的计算公式。

2.点、直线、平面之间的位置关系。

(1)理解空间直线、平面位置关系的定义。

(2)认识和理解空间中线面平行、垂直的有关性质与判定定理。

3.能运用公理、定理和已获得的结论证明一些空间图形位置关系的简单命题。

(十)平面解析几何初步

1.直线与方程

(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。

(2)能根据斜率判定两条直线平行或垂直。

(3)根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。

(4) 能用解方程组的方法求两条相交直线的交点坐标。

(5)掌握平面上两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

2.圆与方程

 (1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程。

 (2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系。

3.圆锥曲线与方程

(1)掌握椭圆的定义、几何图形、标准方程及简单几何性质。

(2)掌握双曲线、抛物线的定义、几何图形和标准方程,了解它们的简单几何性质。

(十一)排列组合

 1.掌握分类计数原理及分步计数原理,会用这两个原理解决一些较简单的

问题。

2.理解排列和排列数的意义,会用排列数公式计算简单的排列问题。

3.理解组合和组合数的意义及组合数的性质,会用组合数公式计算简单的

组合问题。

(十二)概率与统计初步

1.事件与概率

(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。

(2)了解两个互斥事件的概率加法公式。

2.古典概型

(1)理解古典概型及其概率计算公式。

(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

3.了解直方图与频率分布,理解总体与样本,了解抽样方法。

4.理解总体均值、标准差,会用样本均值、标准差估计总体均值、标准差。

数学大纲.doc


招生简章 招生专业 历年分数 考试大纲 报名入口

历年试题New 更多
免责声明:本文系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!