2019年山东商业职业技术学院高职单独招生文化课(数学)考试大纲

浏览
2019-08-05 15:25:53

2019年山东商业职业技术学院高职单独招生文化课(数学)考试大纲




山东商业职业技术学院2019年单独招生

文化课(数学)考试大纲

一、考试内容和要求

数学考试旨在测试学生的数学基础知识、基本技能、基本方法、运算能力、逻辑思维能力、空间想象能力,以及运用所学数学知识、思想和方法,分析问题和解决问题的能力。

考试内容为代数、三角、平面解析几何、立体几何、概率与统计初步五个部分。

考试内容的知识要求和能力要求作如下说明:

基本技能:掌握计算技能、计算工具使用技能和数据处理技能。

基本方法:掌握待定系数法、配方法、坐标法。

运算能力:理解算理,会根据概念、定义、定理、法则、公式进行正确计算和变形;能分析条件,寻求合理、简捷的运算方法。

数学思维能力:能依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题有条理地进行思考、判断、推理和求解,并能够准确、清晰、有条理地进行表述;针对不同的问题(或需求),会选择合适的模型(模式)。

空间想象能力:能依据文字、语言描述,或较简单的几何体及其组合想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出正确图形,并能对图形进行分解、组合、变形。

分析问题和解决问题的能力:能阅读理解对问题进行陈述的材料;能综合应用所学数学知识、数学思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述。

(一)代数

1.集合

集合的概念,集合的表示法,集合之间的关系,集合的基本运算。

要求:

(1)理解集合的概念,掌握集合的表示法,掌握集合之间的关系(子集、真子集、相等),掌握集合的交、并、补运算。

2.不等式

不等式的基本性质,区间,一元二次不等式的解法。

要求:

(1)掌握不等式的性质。

(2)会解一元一次不等式(组),会用区间表示不等式的解集。

(3)会解一元二次不等式、简单的绝对值不等式和简单的分式不等式的解法。

3.函数

函数的概念,函数的表示方法,函数的单调性、奇偶性。

分段函数,一次函数、二次函数的图象和性质。

要求:

(1)理解函数的概念及其表示法,会求一些常见函数的定义域。

(2)理解函数符号 f (x) 的含义,会由 f (x) 表达式求出 f (a x+b) 的表达式。

(3)理解函数的单调性、奇偶性的概念,掌握判断一些简单函数单调性、奇偶性的方法。

(4)理解分段函数的概念。

(5)理解二次函数的概念,掌握二次函数的图象和性质。

(6)会求二次函数的解析式,会求二次函数的最值。

(7)能灵活运用二次函数的知识解决简单的有关问题。

4.指数函数与对数函数

指数(零指数、负整指数、分数指数)的概念,实数指数幂的运算法则。

指数函数的概念,指数函数的图象和性质。

对数的概念,对数的性质与运算法则。

对数函数的概念,对数函数的图象和性质。

要求:

(1)掌握有理指数幂的运算性质;掌握指数函数的概念、图像和性质。

(2)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。

(3)能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。

5.数列

数列的概念。

等差数列及其通项公式,等差中项,等差数列前 n 项和公式。

等比数列及其通项公式,等比中项,等比数列前 n 项和公式。

要求:

(1)理解数列概念和数列通项公式的意义。

(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。

(3)掌握等比数列的概念,掌握等比数列的通项公式及前 n 项和公式,并能解决简单的实际问题。

6.平面向量

向量的概念,向量的线性运算。

向量直角坐标的概念,向量的直角坐标运算,中点公式、距离公式。

向量夹角的定义,向量的内积。两向量垂直、平行的条件。

要求:

(1)理解向量的概念,会正确进行向量的线性运算(加法、减法和数乘向量)。

(2)掌握向量的直角坐标及其与点坐标之间的关系,掌握向量的直角坐标运算。

(3)掌握两向量垂直、平行的条件。

(4)掌握中点公式、距离公式。

(5)掌握向量夹角的定义,向量内积的定义、性质及其运算。掌握向量内积的直角坐标运算。

(6)能利用向量的知识解决简单的相关问题。

7.排列、组合与二项式定理

分类计数原理与分步计数原理。

排列的概念,排列数公式。

组合的概念,组合数公式及性质。

二项式定理,二项式系数的性质。

要求:

(1)理解分类计数原理及分步计数原理,会用这两个原理解决一些较简单的问题。

(2)理解排列和排列数的意义,会用排列数公式计算简单的排列问题。

(3)理解组合和组合数的意义及组合数的性质,会用组合数公式计算简单的组合问题。

(4)掌握二项式定理,理解二项式系数的性质。

(二)三角

角的概念的推广,弧度制。

任意角三角函数(正弦、余弦和正切)的概念,同角三角函数的基本关系式。

三角函数诱导公式。

三角函数(正弦和余弦)的图象和性质。正弦型函数的图象和性质。

已知三角函数值求指定范围内的角。

和角公式,倍角公式。

正弦定理、余弦定理及三角形的面积公式。

要求:

(1)理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算

(2)理解任意角三角函数的定义,掌握三角函数在各象限的符号和同角三角函数间的基本关系式。

(3)会用诱导公式化简三角函数式。

(4)掌握正弦函数、正弦型函数的图象和性质(定义域、值域、周期性、奇偶性、单调性)。了解余弦函数的图象和性质。

(5)会由三角函数(正弦和余弦)值求出指定范围内的角。

(6)掌握和角公式与倍角公式,会用它们进行计算、化简和证明。

(7)会求函数 y=f (sin x) 的最值。

(8)掌握正弦定理和余弦定理。会根据已知条件求三角形的边、角及面积。

(三)平面解析几何

直线的倾斜角和斜率。直线方程的点斜式和斜截式。直线方程的一般式。

两条直线垂直与平行的条件,点到直线的距离。

圆的标准方程和一般方程。

椭圆的标准方程和性质。

双曲线的标准方程和性质。

抛物线的标准方程和性质。

要求:

(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握由一点和斜率导出直线方程的方法;掌握直线方程的点斜式、斜截式和直线方程的一般式,并能根据条件熟练地求出直线的方程。

(2)会求点到直线的距离,掌握两条直线平行与垂直的条件;能够根据直线的方程判断两直线的位置关系。

(3)掌握圆的标准方程和一般方程以及直线与圆的位置关系,能灵活运用它们解决有关问题。

(4)掌握圆锥曲线(椭圆、双曲线、抛物线)的概念、标准方程和性质,能灵活运用它们解决有关问题。

(四)立体几何

多面体、旋转体和棱柱、棱锥、圆柱、圆锥、球的概念。

柱体、锥体、球的表面积和体积公式。

平面的表示法,平面的基本性质。

空间直线与直线,直线与平面,平面与平面的位置关系。

直线与平面、平面与平面的两种位置(平行、垂直)关系的判定与性质。

点到平面的距离、直线到平面的距离、平行平面间的距离的概念。

要求:

(1)了解多面体、旋转体和棱柱、棱锥、圆柱、圆锥、球的概念。

(2)掌握柱体、锥体、球的表面积和体积公式。

(3)了解平面的基本性质。

(4)理解空间直线与直线,直线与平面,平面与平面的位置关系。

(5)理解直线与直线、直线与平面、平面与平面的两种位置(平行、垂直)关系的判定与性质。

(6)了解点到平面的距离、直线到平面的距离、平行平面间的距离的概念,并会解决相关的距离问题。

(五)概率与统计初步

样本空间、随机事件、基本事件、古典概型、古典概率的概念、概率的简单性质。

直方图与频率分布,总体与样本,抽样方法(简单的随机抽样,系统抽样,分层抽样)。

要求:

(1)了解样本空间、随机事件、基本事件、古典概型、古典概率的概念及概率的简单性质,会应用古典概率解决一些简单的实际问题。

(2)了解直方图与频率分布,理解总体与样本,了解抽样方法。

(3)能运用概率、统计初步知识解决简单的实际问题。

二、试题结构

(一)试题内容比例

代数                               约50%

三角                               约20%

平面解析几何                       约15%

立体几何                           约10%

概率与统计初步                     约5%

(二)试题难易程度比例

基础知识                           约50%

灵活掌握                           约30%

综合运用                           约20%

三、考试形式

  1、答卷方式:闭卷:笔试。

  2、分值:总分50分。


招生简章 招生专业 历年分数 考试大纲 报名入口

历年试题New 更多
免责声明:本文系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!