一、考试目标要求
数学科考试的主要考查方面包括:中学数学基础知识、基本数学思想方法。
1.知识
知识要求是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程中的数学概念、性质、法则、公式、公理、定理。
对知识的要求依次是了解、理解、掌握三个层次。
(1)了解:要求对所列知识的含义有初步的认识,知道这些知识内容是什ô,能按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。
(2)理解:要求对所列内容有较深刻的理性认识,知识间的逻辑关系,能够对所列知识作正确的描述,并用数学语言表达出来,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。
(3)掌握:要求能够对所列的知识内容进行推导、证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。
2.数学思想方法
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含在数学知识发生、发展和应用的过程中。对它的考查是对数学知识在更高层次上的抽象和概括的考查,主要考查函数与方程的思想、数形结合的思想、分类与整合的思想、化归与转化的思想、特殊与一般的思想、或然与必然的思想等。对数学思想方法的考查要与数学知识的考查结合进行,通过对数学知识的考查,反映学生对数学思想方法的理解和掌握程度。考查时,主要是从学科整体意义上考虑,注重通性通法,淡化特殊技巧,有效地检测学生对中学数学知识中所蕴含的数学思想方法的掌握程度。
二、考试内容
普通高中《数学课程标准》所规定的五个必修模块的学习内容。具体分述如下:
(一)集合
1.集合的含义与表示
了解集合的含义,了解元素与集合的关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述具体问题。
2.集合间的基本关系
理解集合之间包含与相等的含义;了解全集、子集、空集的含义。
3.集合的基本运算
理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解补集的含义,会求给定子集的补集;会用饼图图表达两个简单集合间的关系及运算。
(二)函数概念与基本初等函数Ⅰ
1.函数
了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;了解简单的分段函数,并能简单应用(函数分段不超过三段);理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义;会运用初等函数的图象分析函数的性质。
2.指数函数
理解有理指数幂的含义,了解实数指数幂的意义,掌握有理指数幂的运算及性质;理解指数函数的概念及其单调性,掌握函数图象通过的特殊点。
3. 对数函数
理解对数的概念及其运算性质,会用换底公式将一般对数转化成自然对数或常用对数,了解对数在简化运算中的作用。
4. 幂函数
了解幂函数的概念;了解幂函数的图象的变化情况。
5.函数与方程
了解函数的零点与方程根的联系,会判断一元二次方程根的存在性与根的个数。
6.函数模型及其应用
了解指数函数、对数函数、幂函数的增长特征,知道直线上升、指数爆炸、对数增长等不同函数类型增长的含义;了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。
(三)立体几何初步
1.空间几何体
了解柱、锥、台、球及其简单组合体的结构特征,会用这些特征描述现实生活中简单物体的结构;能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图;会用平行投影方法画出简单空间图形的三图视与直观图,了解空间图形的不同表示形式。
2. 点、直线、平面之间的λ置关系
理解空间直线、平面λ置关系的定义,会用以下公理和定理进行推理:
(四)平面解析几何初步
1.直线与方程
掌握确定直线λ置的几何要素;理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;能根据两条直线的斜率判定这两条直线平行或垂直;掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系;能用解方程组的方法求两相交直线的交点坐标;掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离。
2.圆与方程
掌握圆的几何要素,掌握圆的标准方程与一般方程;能根据给定直线、圆的方程,判断直线与圆的λ置关系;能根据给定两个圆的方程判断圆与圆的λ置关系;能用直线和圆的方程解决一些简单的问题;了解用代数方法处理几何问题的思想。
3.空间直角坐标系
了解空间直角坐标系,会用空间直角坐标刻画点的λ置;会求空间两点间的距离。
(五)三角函数基本知识
1.平面向量的实际背景及基本概念
了解向量的实际背景;理解平面向量概念和两个向量相等的含义;理解向量的几何表示。
2.向量的线性运算
掌握向量加、减法的运算,理解其几何意义;理解两个向量共线的含义;了解向量的线性运算性质及其几何意义。
3.平面向量的基本定理及坐标表示
了解平面向量的基本定理及其意义;掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加法、减法与数乘运算;理解用坐标表示的平面向量共线的条件。
4.平面向量的数量积
理解平面向量数量积的含义及其物理意义;了解平面向量的数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算;会运用数量积表示两个向量的夹角,会判断两个平面向量的垂直关系。
(七)解三角形
1.正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
2.正弦定理和余弦定理的应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
(八)数列
1.数列的概念和简单表示法
了解数列的概念和几种简单的表示方法(列表、图象、通项公式);知道数列是自变量为正整数的特殊函数。
2.等差数列、等比数列
理解等差数列、等比数列的概念;掌握等差数列、等比数列的通项公式与前n项和公式;能判断数列的等差或等比关系,并用等差数列、等比数列的有关知识解决相应的问题;了解等差数列与一次函数的关系,等比数列与指数函数的关系。
三、考试形式
考试采用闭卷笔试的形式,全卷100分,考试时间60分钟。
四、试卷结构
试卷包含选择题、填空题和解答题三种题型。其中选择题是四选一型的单项选择题;填空题只要求直接写出结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等。解答应写出文字说明、演算步骤或推理论证过程。三种题型所占分数的百分比约为:选择题占45%,填空题占15%,解答题占40%。
试题按其难度分为容易题,中档题和稍难题。其中难度值为0.8以上的试题为容易题,约占80%;难度值为0.6—0.8之间的试题为中档题,约占10%;难度值为0.4—0.6之间的试题为较难题,约占10%;不出现难度值为0.3以下的试题。试卷的总体难度控制在0.8左右。